Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 370
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 97, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561833

RESUMO

BACKGROUND: CAR T cell therapy is a promising approach to improve outcomes and decrease toxicities for patients with cancer. While extraordinary success has been achieved using CAR T cells to treat patients with CD19-positive malignancies, multiple obstacles have so far limited the benefit of CAR T cell therapy for patients with solid tumors. Novel manufacturing and engineering approaches show great promise to enhance CAR T cell function against solid tumors. However, similar to single agent chemotherapy approaches, CAR T cell monotherapy may be unable to achieve high cure rates for patients with difficult to treat solid tumors. Thus, combinatorial drug plus CAR T cell approaches are likely required to achieve widespread clinical success. METHODS: We developed a novel, confocal microscopy based, high-content screen to evaluate 1114 FDA approved drugs for the potential to increase expression of the solid tumor antigen B7-H3 on the surface of osteosarcoma cells. Western blot, RT-qPCR, siRNA knockdown and flow cytometry assays were used to validate screening results and identify mechanisms of drug-induced B7-H3 upregulation. Cytokine and cytotoxicity assays were used to determine if drug pre-treatment enhanced B7-H3-CAR T cell effector function. RESULTS: Fifty-five drugs were identified to increase B7-H3 expression on the surface of LM7 osteosarcoma cells using a novel high-content, high-throughput screen. One drug, ingenol-3-angelate (I3A), increased B7-H3 expression by up to 100%, and was evaluated in downstream experiments. Validation assays confirmed I3A increased B7-H3 expression in a biphasic dose response and cell dependent fashion. Mechanistic studies demonstrated that I3A increased B7-H3 (CD276) mRNA, total protein, and cell surface expression via protein kinase C alpha activation. Functionally, I3A induced B7-H3 expression enhanced B7-H3-CAR T cell function in cytokine production and cytotoxicity assays. CONCLUSIONS: This study demonstrates a novel high-content and high-throughput screen can identify drugs to enhance CAR T cell activity. This and other high-content technologies will pave the way to develop clinical trials implementing rational drug plus CAR T cell combinatorial therapies. Importantly, the technique could also be repurposed for an array of basic and translational research applications where drugs are needed to modulate cell surface protein expression.


Assuntos
Neoplasias Ósseas , Diterpenos , Osteossarcoma , Humanos , Proteína Quinase C-alfa/metabolismo , Antígenos B7/genética , Antígenos B7/metabolismo , Osteossarcoma/metabolismo , Neoplasias Ósseas/patologia , Linfócitos T , Citocinas/metabolismo , Linhagem Celular Tumoral
2.
Blood Cancer J ; 14(1): 67, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637557

RESUMO

Acute myeloid leukemia (AML) remains a therapeutic challenge despite recent therapeutic advances. Although monoclonal antibodies (mAbs) engaging natural killer (NK) cells via antibody-dependent cellular cytotoxicity (ADCC) hold promise in cancer therapy, almost none have received clinical approval for AML, so far. Recently, CD276 (B7-H3) has emerged as a promising target for AML immunotherapy, due to its high expression on leukemic blasts of AML patients. Here, we present the preclinical development of the Fc-optimized CD276 mAb 8H8_SDIE with enhanced CD16 affinity. We demonstrate that 8H8_SDIE specifically binds to CD276 on AML cell lines and primary AML cells and induces pronounced NK cell activation and degranulation as measured by CD69, CD25, and CD107a. Secretion of IFNγ, TNF, granzyme B, granulysin, and perforin, which mediate NK cell effector functions, was induced by 8H8_SDIE. A pronounced target cell-restricted lysis of AML cell lines and primary AML cells was observed in cytotoxicity assays using 8H8_SDIE. Finally, xenograft models with 8H8_SDIE did not cause off-target immune activation and effectively inhibited leukemia growth in vivo. We here present a novel attractive immunotherapeutic compound that potently induces anti-leukemic NK cell reactivity in vitro and in vivo as treatment option for AML.


Assuntos
Células Matadoras Naturais , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antígenos B7/metabolismo , Antígenos B7/farmacologia
3.
Front Immunol ; 15: 1337489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566988

RESUMO

Introduction: Chimeric antigen receptor natural killer (CAR-NK) cells have been found to be successful in treating hematologic malignancies and present potential for usage in solid tumors. Methods: In this study, we created CD276-targeted CAR-expressing NK cells from pluripotent stem cells (iPSC CD276-targeted CAR-NK cells) and evaluated their cytotoxicity against esophageal squamous cell carcinoma (ESCC) using patient-specific organoid (PSO) models comprising of both CD276-positive and CD276-negative adjacent epithelium PSO models (normal control PSO, NC PSO) as well as primary culture of ESCC cell models. In addition, in vitro and in vivo models such as KYSE-150 were also examined. iPSC NK cells and NK-free media were used as the CAR-free and NK-free controls, respectively. Results: The positive CD276 staining was specifically detected on the ESCC membrane in 51.43% (54/105) of the patients of all stages, and in 51.35% (38/74) of stages III and IV. The iPS CD276-targeted CAR-NK cells, comparing with the iPS NK cells and the NK-free medium, exhibited specific and significant cytotoxic activity against CD276-positive ESCC PSO rather than CD276-negative NC PSO, and exhibited significant cytotoxicity against CD276-expressing cultured ESCC cells, as well as against CD276-expressing KYSE-150 in vitro and in BNDG mouse xenograft. Discussion: The efficacy of the iPSC CD276-targeted CAR-NK cells demonstrated by their successful treatment of CD276-expressing ESCC in a multitude of pre-clinical models implied that they hold tremendous therapeutic potential for treating patients with CD276-expressing ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Células-Tronco Pluripotentes Induzidas , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/terapia , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/metabolismo , Células Matadoras Naturais , Antígenos B7/metabolismo
4.
Pathol Res Pract ; 256: 155267, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520953

RESUMO

Melanoma is the most suitable tumor type for immunotherapy, but not all melanoma patients could respond to immunotherapy. B7 homolog 3 (B7-H3) belongs to the B7 family and is overexpressed in a number of malignant tumors, but the expression pattern of B7-H3 in melanoma has not been well summarized. The expression of B7-H3 was investigated in melanoma and its correlations with features of the tumor microenvironment (TME) by using various public databases, including the Cancer Genome Atlas (TCGA), the GEPIA, and the Human Protein Atlas databases. In addition, the in-house melanoma tissue microarray was applied to validate the results from public databases. Based on the public and in-house cohorts, we found that B7-H3 was overexpressed in melanoma tumor tissues and high B7-H3 expression was related to poor clinical outcome. Moreover, B7-H3 was negatively correlated with levels of tumor-infiltrating lymphocytes (TILs) and positively correlated with collagen infiltration. With clinical translational value, the predictive value of B7-H3 for conventional immunotherapy was detected using the Kaplan-Meier plotter tool, and the results showed that melanoma patients with high B7-H3 expression were insensitive to anti-PD-1 and anti-CTLA-4 immunotherapy. In conclusion, we first investigate the expression of B7-H3 in melanoma and its correlations with the TME features, and indicate B7-H3 as a promising therapeutic target in melanoma patients that are insensitive to conventional immunotherapy.


Assuntos
Melanoma , Humanos , Antígenos B7/metabolismo , Inibidores de Checkpoint Imunológico , Linfócitos do Interstício Tumoral , Melanoma/patologia , Fenótipo , Microambiente Tumoral
5.
Cancer Immunol Immunother ; 73(5): 77, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554158

RESUMO

The use of large animal spontaneous models of solid cancers, such as dogs with osteosarcoma (OS), can help develop new cancer immunotherapy approaches, including chimeric antigen receptor (CAR) T cells. The goal of the present study was to generate canine CAR T cells targeting the B7-H3 (CD276) co-stimulatory molecule overexpressed by several solid cancers, including OS in both humans and dogs, and to assess their ability to recognize B7-H3 expressed by canine OS cell lines or by canine tumors in xenograft models. A second objective was to determine whether a novel dual CAR that expressed a chemokine receptor together with the B7-H3 CAR improved the activity of the canine CAR T cells. Therefore, in the studies reported here we examined B7-H3 expression by canine OS tumors, evaluated target engagement by canine B7-H3 CAR T cells in vitro, and compared the relative effectiveness of B7-H3 CAR T cells versus B7-H3-CXCR2 dual CAR T cells in canine xenograft models. We found that most canine OS tumors expressed B7-H3; whereas, levels were undetectable on normal dog tissues. Both B7-H3 CAR T cells demonstrated activation and OS-specific target killing in vitro, but there was significantly greater cytokine production by B7-H3-CXCR2 CAR T cells. In canine OS xenograft models, little anti-tumor activity was generated by B7-H3 CAR T cells; whereas, B7-H3-CXCR2 CAR T cells significantly inhibited tumor growth, inducing complete tumor elimination in most treated mice. These findings indicated therefore that addition of a chemokine receptor could significantly improve the anti-tumor activity of canine B7-H3 CAR T cells, and that evaluation of this new dual CAR construct in dogs with primary or metastatic OS is warranted since such studies could provide a critical and realistic validation of the chemokine receptor concept.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Cães , Animais , Camundongos , Antígenos B7/metabolismo , Osteossarcoma/terapia , Neoplasias Ósseas/patologia , Linfócitos T , Receptores de Quimiocinas , Linhagem Celular Tumoral
6.
J Med Chem ; 67(5): 3590-3605, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38412237

RESUMO

VISTA (V-domain Ig suppressor of T cell activation) is a novel immune checkpoint protein and represents a promising target for cancer immunotherapy. Here, we report the design, synthesis, and evaluation of a series of methoxy-pyrimidine-based VISTA small molecule inhibitors with potent antitumor activity. By employing molecular docking and microscale thermophoresis (MST) assay, we identified a lead compound A1 that binds to VISTA protein with high affinity and optimized its structure. A4 was then obtained, which exhibited the strongest binding ability to VISTA protein, with a KD value of 0.49 ± 0.20 µM. In vitro, A4 significantly activated peripheral blood mononuclear cells (PBMCs) induced the release of cytokines such as IFN-γ and enhanced the cytotoxicity of PBMCs against tumor cells. In vivo, A4 displayed potent antitumor activity and synergized with PD-L1 antibody to enhance the therapeutic effect against cancer. These results suggest that compound A4 is an effective VISTA small molecule inhibitor, providing a basis for the future development of VISTA-targeted drugs.


Assuntos
Antígenos B7 , Neoplasias , Humanos , Antígenos B7/química , Antígenos B7/metabolismo , Simulação de Acoplamento Molecular , Leucócitos Mononucleares/metabolismo , Anticorpos
7.
BMC Cancer ; 24(1): 182, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326735

RESUMO

Breast cancer (BC) is the second-leading factor of mortality for women globally and is brought on by a variety of genetic and environmental causes. The conventional treatments for this disease have limitations, making it difficult to improve the lifespan of breast cancer patients. As a result, extensive research has been conducted over the past decade to find innovative solutions to these challenges. Targeting of the antitumor immune response through the immunomodulatory checkpoint protein B7 family has revolutionized cancer treatment and led to intermittent patient responses. B7-H3 has recently received attention because of its significant demodulation and its immunomodulatory effects in many cancers. Uncontrolled B7-H3 expression and a bad outlook are strongly associated, according to a substantial body of cancer research. Numerous studies have shown that BC has significant B7-H3 expression, and B7-H3 induces an immune evasion phenotype, consequently enhancing the survival, proliferation, metastasis, and drug resistance of BC cells. Thus, an innovative target for immunotherapy against BC may be the B7-H3 checkpoint.In this review, we discuss the structure and regulation of B7-H3 and its double costimulatory/coinhibitory function within the framework of cancer and normal physiology. Then we expound the malignant behavior of B7-H3 in BC and its role in the tumor microenvironment (TME) and finally focus on targeted drugs against B7-H3 that have opened new therapeutic opportunities in BC.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Antígenos B7/metabolismo , Imunoterapia , Imunomodulação , Microambiente Tumoral
8.
Anticancer Drugs ; 35(5): 426-432, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38386015

RESUMO

The aim of this study was to investigate the utility of serum soluble B7-H3 (sB7-H3) as a diagnostic marker for early-stage nonsmall cell lung cancer (NSCLC) and its potential for evaluating the prognosis of patients with advanced-stage NSCLC. In this study, an ELISA was employed to detect the expression levels of sB7-H3 in a cohort of patients diagnosed with NSCLC ( n = 122) and a control group ( n = 42) during the same observation period. Comparative analyses were conducted to ascertain the variations in sB7-H3 concentrations between the NSCLC cohort and the healthy control group, as well as across pathological types and the presence and absence of lymph node metastasis. (1) The concentration of sB7-H3 in patients diagnosed with NSCLC exhibited a statistically significant increase compared to that observed in the healthy control group ( P < 0.05). Elevated expression levels of sB7-H3 demonstrated a significant correlation with pathological type, lymph node metastasis, tumor, node and metastasis stage and programmed cell death ligand (PD-L1) expression ( P < 0.05). (2) The diagnostic utility of sB7-H3 for the diagnosis of NSCLC and the heightened expression of PD-L1 demonstrated high levels of sensitivity and specificity. (3) Elevated levels of sB7-H3 emerged as an independent risk factor impacting the overall survival of patients diagnosed with advanced NSCLC. The findings of this study suggest that sB7-H3 holds promise as a diagnostic tool for early-stage NSCLC. The elevated expression of sB7-H3 appears to serve as a reliable indicator for assessing the prognosis of patients diagnosed with advanced NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Prognóstico , Antígeno B7-H1 , Neoplasias Pulmonares/diagnóstico , Metástase Linfática , Antígenos B7/metabolismo , Fatores de Transcrição
9.
Front Immunol ; 15: 1343929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322253

RESUMO

Pancreatic cancer is a highly lethal disease with limited treatment options. Hence, there is a considerable medical need for novel treatment strategies. Monoclonal antibodies (mAbs) have significantly improved cancer therapy, primarily due to their ability to stimulate antibody-dependent cellular cytotoxicity (ADCC), which plays a crucial role in their therapeutic efficacy. As a result, significant effort has been focused on improving this critical function by engineering mAbs with Fc regions that have increased affinity for the Fc receptor CD16 expressed on natural killer (NK) cells, the major cell population that mediates ADCC in humans. Here we report on the preclinical characterization of a mAb directed to the target antigen B7-H3 (CD276) containing an Fc part with the amino acid substitutions S239D/I332E to increase affinity for CD16 (B7-H3-SDIE) for the treatment of pancreatic cancer. B7-H3 (CD276) is highly expressed in many tumor entities, whereas expression on healthy tissues is more limited. Our findings confirm high expression of B7-H3 on pancreatic cancer cells. Furthermore, our study shows that B7-H3-SDIE effectively activates NK cells against pancreatic cancer cells in an antigen-dependent manner, as demonstrated by the analysis of NK cell activation, degranulation and cytokine release. The activation of NK cells resulted in significant tumor cell lysis in both short-term and long-term cytotoxicity assays. In conclusion, B7-H3-SDIE constitutes a promising agent for the treatment of pancreatic cancer.


Assuntos
Imunoterapia , Neoplasias Pancreáticas , Humanos , Imunoterapia/métodos , Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Monoclonais , Células Matadoras Naturais , Neoplasias Pancreáticas/metabolismo , Antígenos B7/metabolismo
10.
Cancer Lett ; 587: 216713, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38364961

RESUMO

Human leukocyte antigen (HLA) class I defects are associated with cancer progression. However, their prognostic significance is controversial and may be modulated by immune checkpoints. Here, we investigated whether the checkpoint B7-H3 modulates the relationship between HLA class I and pancreatic ductal adenocarcinoma (PDAC) prognosis. PDAC tumors were analyzed for the expression of B7-H3, HLA class I, HLA class II molecules, and for the presence of tumor-infiltrating immune cells. We observed defective HLA class I and HLA class II expressions in 75% and 59% of PDAC samples, respectively. HLA class I and B7-H3 expression were positively related at mRNA and protein level, potentially because of shared regulation by RELA, a sub-unit of NF-kB. High B7-H3 expression and low CD8+ T cell density were indicators of poor survival, while HLA class I was not. Defective HLA class I expression was associated with unfavorable survival only in patients with low B7-H3 expression. Favorable survival was observed only when HLA class I expression was high and B7-H3 expression low. Our results provide the rationale for targeting B7-H3 in patients with PDAC tumors displaying high HLA class I levels.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Antígenos B7/genética , Antígenos B7/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma Ductal Pancreático/patologia , Progressão da Doença , Antígenos de Histocompatibilidade Classe I , Linfócitos do Interstício Tumoral , Neoplasias Pancreáticas/metabolismo , Prognóstico
11.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003612

RESUMO

Therapies utilizing autologous mesenchymal cell delivery are being investigated as anti-inflammatory and regenerative treatments for a broad spectrum of age-related diseases, as well as various chronic and acute pathological conditions. Easily available allogeneic full-term human placenta mesenchymal stromal cells (pMSCs) were used as a potential pro-regenerative, cell-based therapy in degenerative diseases, which could be applied also to elderly individuals. To explore the potential of allogeneic pMSCs transplantation for pro-regenerative applications, such cells were isolated from five different term-placentas, obtained from the dissected maternal, endometrial (mpMSCs), and fetal chorion tissues (fpMSCs), respectively. The proliferation rate of the cells in the culture, as well as their shape, in vitro differentiation potential, and the expression of mesenchymal lineage and stem cell markers, were investigated. Moreover, we studied the expression of immune checkpoint antigen CD276 as a possible modulation of the rejection of transplanted non-HLA-matched homologous or even xeno-transplanted pMSCs. The expression of the cell surface markers was also explored in parallel in the cryosections of the relevant intact placenta tissue samples. The expansion of pMSCs in a clinical-grade medium complemented with 5% human platelet lysate and 5% human serum induced a significant expression of CD276 when compared to mpMSCs expanded in a commercial medium. We suggest that the expansion of mpMSCs, especially in a medium containing platelet lysate, elevated the expression of the immune-regulatory cell surface marker CD276. This may contribute to the immune tolerance towards allogeneic pMSC transplantations in clinical situations and even in xenogenic animal models of human diseases. The endurance of the injected comparably young human-term pMSCs may promote prolonged effects in clinical applications employing non-HLA-matched allogeneic cell therapy for various degenerative disorders, especially in aged adults.


Assuntos
Antígenos B7 , Células-Tronco Mesenquimais , Humanos , Doença Aguda , Antígenos B7/metabolismo , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Meios de Cultura/farmacologia , Células-Tronco Mesenquimais/metabolismo
12.
J Exp Clin Cancer Res ; 42(1): 293, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37924157

RESUMO

BACKGROUND: Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in childhood, whose prognosis is still poor especially for metastatic, high-grade, and relapsed RMS. New treatments are urgently needed, especially systemic therapies. Chimeric Antigen Receptor T cells (CAR Ts) are very effective against hematological malignancies, but their efficacy against solid tumors needs to be improved. CD276 (B7-H3) is a target upregulated in RMS and detected at low levels in normal tissues. FGFR4 is a very specific target for RMS. Here, we optimized CAR Ts for these two targets, alone or in combination, and tested their anti-tumor activity in vitro and in vivo. METHODS: Four different single-domain antibodies were used to select the most specific FGFR4-CAR construct. RMS cell killing and cytokine production by CD276- and FGFR4-CAR Ts expressing CD8α or CD28 HD/TM domains in combination with 4-1BB and/or CD28 co-stimulatory domains were tested in vitro. The most effective CD276- and FGFR4-CAR Ts were used to generate Dual-CAR Ts. Tumor killing was evaluated in vivo in three orthotopic RMS mouse models. RESULTS: CD276.V-CAR Ts (276.MG.CD28HD/TM.CD28CSD.3ζ) showed the strongest killing of RMS cells, and the highest release of IFN-γ and Granzyme B in vitro. FGFR4.V-CAR Ts (F8-FR4.CD28HD/TM.CD28CSD.3ζ) showed the most specific killing. CD276-CAR Ts successfully eradicated RD- and Rh4-derived RMS tumors in vivo, achieving complete remission in 3/5 and 5/5 mice, respectively. In CD276low JR-tumors, however, they achieved complete remission in only 1/5 mice. FGFR4 CAR Ts instead delayed Rh4 tumor growth. Dual-CAR Ts promoted Rh4-tumors clearance in 5/5 mice. CONCLUSIONS: CD276- and CD276/FGFR4-directed CAR Ts showed effective RMS cell killing in vitro and eradication of CD276high RMS tumors in vivo. CD276low tumors escaped the therapy highlighting a correlation between antigen density and effectiveness. FGFR4-CAR Ts showed specific killing in vitro but could only delay RMS growth in vivo. Our results demonstrate that combined expression of CD276-CAR with other CAR does not reduce its benefit. Introducing immunotherapy with CD276-CAR Ts in RMS seems to be feasible and promising, although CAR constructs design and target combinations have to be further improved to eradicate tumors with low target expression.


Assuntos
Antígenos B7 , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Rabdomiossarcoma , Linfócitos T , Animais , Camundongos , Antígenos B7/metabolismo , Antígenos CD28/metabolismo , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Rabdomiossarcoma/terapia , Rabdomiossarcoma/patologia
13.
J Immunother Cancer ; 11(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37775116

RESUMO

INTRODUCTION: B7-H3 is a potential target for pediatric cancers, including neuroblastoma (NB). Vobramitamab duocarmazine (also referred to as MGC018 and herein referred to as vobra duo) is an investigational duocarmycin-based antibody-drug conjugate (ADC) directed against the B7-H3 antigen. It is composed of an anti-B7-H3 humanized IgG1/kappa monoclonal antibody chemically conjugated through a cleavable valine-citrulline linker to a duocarmycin-hydroxybenzamide azaindole (vc-seco-DUBA). Vobra duo has shown preliminary clinical activity in B7-H3-expressing tumors. METHODS: B7-H3 expression was evaluated by flow-cytometry in a panel of human NB cell lines. Cytotoxicity was evaluated in monolayer and in multicellular tumor spheroid (MCTS) models by the water-soluble tetrazolium salt,MTS, proliferation assay and Cell Titer Glo 3D cell viability assay, respectively. Apoptotic cell death was investigated by annexin V staining. Orthotopic, pseudometastatic, and resected mouse NB models were developed to mimic disease conditions related to primary tumor growth, metastases, and circulating tumor cells with minimal residual disease, respectively. RESULTS: All human NB cell lines expressed cell surface B7-H3 in a unimodal fashion. Vobra duo was cytotoxic in a dose-dependent and time-dependent manner against all cell lines (IC50 range 5.1-53.9 ng/mL) and NB MCTS (IC50 range 17.8-364 ng/mL). Vobra duo was inactive against a murine NB cell line (NX-S2) that did not express human B7-H3; however, NX-S2 cells were killed in the presence of vobra duo when co-cultured with human B7-H3-expressing cells, demonstrating bystander activity. In orthotopic and pseudometastatic mouse models, weekly intravenous treatments with 1 mg/kg vobra duo for 3 weeks delayed tumor growth compared with animals treated with an irrelevant (anti-CD20) duocarmycin-ADC. Vobra duo treatment for 4 weeks further increased survival in both orthotopic and resected NB models. Vobra duo compared favorably to TOpotecan-TEMozolomide (TOTEM), the standard-of-care therapy for NB relapsed disease, with tumor relapse delayed or arrested by two or three repeated 4-week vobra duo treatments, respectively. Further increased survival was observed in mice treated with vobra duo in combination with TOTEM. Vobra duo treatment was not associated with body weight loss, hematological toxicity, or clinical chemistry abnormalities. CONCLUSION: Vobra duo exerts relevant antitumor activity in preclinical B7-H3-expressing NB models and represents a potential candidate for clinical translation.


Assuntos
Antineoplásicos , Imunoconjugados , Neuroblastoma , Criança , Humanos , Camundongos , Animais , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Duocarmicinas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antígenos B7/metabolismo , Anticorpos Monoclonais Humanizados
14.
Nucl Med Biol ; 124-125: 108384, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37699299

RESUMO

B7-H3 (CD276), an immune checkpoint protein, is a promising molecular target for immune therapy of malignant tumours. Sufficient B7-H3 expression level is a precondition for successful therapy. Radionuclide molecular imaging is a powerful technique for visualization of expression levels of molecular targets in vivo. Use of small radiolabelled targeting proteins would enable high-contrast radionuclide imaging of molecular targets if adequate binding affinity and specificity of an imaging probe could be provided. Affibody molecules, small engineered affinity proteins based on a non-immunoglobulin scaffold, have demonstrated an appreciable potential in radionuclide imaging. Proof-of principle of radionuclide visualization of expression levels of B7-H3 in vivo was demonstrated using the [99mTc]Tc-AC12-GGGC Affibody molecule. We performed an affinity maturation of AC12, enabling selection of clones with higher affinity. Three most promising clones were expressed with a -GGGC (triglycine-cysteine) chelating sequence at the C-terminus and labelled with technetium-99m (99mTc). 99mTc-labelled conjugates bound to B7-H3-expressing cells specifically in vitro and in vivo. Biodistribution in mice bearing B7-H3-expressing SKOV-3 xenografts demonstrated improved imaging properties of the new conjugates compared with the parental variant [99mTc]Tc-AC12-GGGC. [99mTc]Tc-SYNT-179 provided the strongest improvement of tumour-to-organ ratios. Thus, affinity maturation of B7-H3 Affibody molecules could improve biodistribution and targeting properties for imaging of B7-H3-expressing tumours.


Assuntos
Proteínas de Checkpoint Imunológico , Neoplasias , Humanos , Animais , Camundongos , Proteínas de Checkpoint Imunológico/metabolismo , Distribuição Tecidual , Tecnécio/química , Cintilografia , Neoplasias/metabolismo , Linhagem Celular Tumoral , Antígenos B7/metabolismo
15.
Int J Biol Sci ; 19(12): 3762-3780, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564196

RESUMO

The immune checkpoint B7-H3 (CD276), a member of the B7 family with immunoregulatory properties, has been identified recently as a novel target for immunotherapy for refractory blood cancers and solid malignant tumors. While research on B7-H3 in brain malignancies is limited, there is growing interest in exploring its therapeutic potential in this context. B7-H3 plays a crucial role in regulating the functions of immune cells, cancer-associated fibroblasts, and endothelial cells within the tumor microenvironment, contributing to the creation of a pro-tumorigenic milieu. This microenvironment promotes uncontrolled cancer cell proliferation, enhanced metabolism, increased cancer stemness, and resistance to standard treatments. Blocking B7-H3 and terminating its immunosuppressive function is expected to improve anti-tumor immune responses and, in turn, ameliorate the progression of tumors. Results from preclinical or observative studies and early-phase trials targeting B7-H3 have revealed promising anti-tumor efficacy and acceptable toxicity in glioblastoma (GBM), diffuse intrinsic pontine glioma (DIPG), medulloblastoma, neuroblastoma, craniopharyngioma, atypical teratoid/rhabdoid tumor, and brain metastases. Ongoing clinical trials are now investigating the use of CAR-T cell therapy and antibody-drug conjugate therapy, either alone or in combination with standard treatments or other therapeutic approaches, targeting B7-H3 in refractory or recurrent GBMs, DIPGs, neuroblastomas, medulloblastomas, ependymomas, and metastatic brain tumors. These trials hold promise for providing effective treatment options for these challenging intracranial malignancies in both adult and pediatric populations.


Assuntos
Neoplasias Encefálicas , Neuroblastoma , Humanos , Antígenos B7/metabolismo , Neoplasias Encefálicas/metabolismo , Células Endoteliais/metabolismo , Imunoterapia/métodos , Imunoterapia Adotiva/métodos , Microambiente Tumoral
16.
Turk Neurosurg ; 33(6): 1086-1092, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37528722

RESUMO

AIM: To determine IDH1 R132H codon and the mRNA levels of PDK1, SLC2A1, EGFR, PTEN, and CD276 genes in brain tumors. MATERIAL AND METHODS: This study included 15 brain tumor tissues [pituitary adenoma (1), pilocytic astrocytoma (1), mixed meningioma (2), mesothelial meningioma (2), atypical meningioma (1), immature teratoma (1), glioblastoma (4), meningioma (2), and bladder cancer metastasis (1)]. The expression levels of genes in brain tumor tissues were analyzed using real-time PCR. Sanger sequencing was performed to identify the IDH1 gene R132H codon. RESULTS: All cases were wild-type in terms of IDH1 R132H: nucleotide 395 G > A; codon CGT > CAT. The mRNA level of PDK1 was lower in grade I tumor tissues (0.675-fold) and increased in grades II-III-IV (7.135, 16.912, and 7.081-fold, respectively) (p < 0.001). The mRNA level of SLC2A1 decreased in all grades I-II-III-IV [(0.424-, 0.093-, 0.234 (p < 0.001), and 0.141-fold (p < 0.005), respectively)]. The mRNA level of EGFR increased in all grades I-II-III-IV [1.388, 5.452 (p < 0.017), 4.624-, and 4.137-fold, respectively]. The mRNA level of PTEN increased in grades I-II-III [1.802-, 1.702-, and 1.5-fold, respectively] and decreased in grade IV (0.176-fold). The mRNA level of CD276 increased in all grades I-II-III-IV [1.8-, 5.756-(p < 0.001), 10.303 (p < 0.001), and 2.5-fold, respectively]. CONCLUSION: We obtained similar findings for previously reported PDK1, EGFR, PTEN, and CD276 gene expression levels. In contrast, SLC2A1 expression was markedly downregulated, as reported in other tumor studies. These findings may be due to the unique nature of brain tumor tissues. Additionally, a decrease in PTEN gene expression has been observed in grade IV brain tumors, including glioblastoma and meningioma. Although the size of the analyzed study group was limited, the gene expression results showed similarities in the behavior of genes during cancer staging.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Meníngeas , Meningioma , Humanos , Glioblastoma/genética , Meningioma/genética , Neoplasias Encefálicas/patologia , Neoplasias Meníngeas/genética , RNA Mensageiro , Códon , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expressão Gênica , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Antígenos B7/genética , Antígenos B7/metabolismo , Transportador de Glucose Tipo 1/genética
18.
Med Oncol ; 40(8): 222, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37402987

RESUMO

Disulfidptosis and immune checkpoint genes play an important role in tumor treatment. But there has been less research on the relationship between disulfidptosis and immune checkpoint of breast cancer. The objective of this study was to identify the hub genes of disulfidptosis- related immune checkpoints in breast cancer. We downloaded breast cancer expression data from The Cancer Genome Atlas database. The expression matrix of disulfidptosis-related immune checkpoints genes was established by mathematical method. A protein-protein interaction networks was established based on this expression matrix, and differential expression analysis was performed between normal and tumor samples. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to functionally annotate putative diferentially expressed genes. Two hub genes CD80 and CD276 were obtained by mathematical statistics and machine learning. Differential expression of these two genes, prognostic survival analysis, combined diagnostic ROC curve and immune results all showed that they were closely related to the occurrence, development and death of breast tumors. The results of this study open up a new way to explore immunotherapy for breast cancer.


Assuntos
Neoplasias da Mama , Redes Reguladoras de Genes , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Mapas de Interação de Proteínas/genética , Biologia Computacional/métodos , Antígenos B7/genética , Antígenos B7/metabolismo
19.
Methods Mol Biol ; 2681: 231-248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37405651

RESUMO

In recent years, the development of bispecific antibodies (bsAbs) has experienced tremendous progress for disease treatment, and consequently, a plethora of bsAbs is currently scrutinized in clinical trials. Besides antibody scaffolds, multifunctional molecules referred to as immunoligands have been developed. These molecules typically harbor a natural ligand entity for the engagement of a specific receptor, while binding to the additional antigen is facilitated by an antibody-derived paratope. Immunoligands can be exploited to conditionally activate immune cells, e.g., natural killer (NK) cells, in the presence of tumor cells, ultimately causing target-dependent tumor cell lysis. However, many ligands naturally show only moderate affinities toward their cognate receptor, potentially hampering killing capacities of immunoligands. Herein, we provide protocols for yeast surface display-based affinity maturation of B7-H6, the natural ligand of NK cell-activating receptor NKp30.


Assuntos
Neoplasias , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Ligantes , Receptor 3 Desencadeador da Citotoxicidade Natural/química , Receptor 3 Desencadeador da Citotoxicidade Natural/metabolismo , Antígenos B7/química , Antígenos B7/metabolismo , Neoplasias/metabolismo , Células Matadoras Naturais
20.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373091

RESUMO

While gastrointestinal tumors remain a multifactorial and prevalent group of malignancies commonly treated surgically in combination with chemotherapy and radiotherapy, advancements regarding immunotherapeutic approaches continue to occur. Entering a new era of immunotherapy focused on overcoming resistance to preceding therapies caused the emergence of new therapeutic strategies. A promising solution surfaces with a V-domain Ig suppressor of T-cell activation (VISTA), a negative regulator of a T-cell function expressed in hematopoietic cells. Due to VISTA's ability to act as both a ligand and a receptor, several therapeutic approaches can be potentially developed. A broad expression of VISTA was discovered on various tumor-growth-controlling cells, which proved to increase in specific tumor microenvironment (TME) conditions, thus serving as a rationale behind the development of new VISTA-targeting. Nevertheless, VISTA's ligands and signaling pathways are still not fully understood. The uncertain results of clinical trials suggest the need for future examining inhibitor agents for VISTA and implicating a double immunotherapeutic blockade. However, more research is needed before the breakthrough can be achieved. This review discusses perspectives and novel approaches presented in the current literature. Based on the results of the ongoing studies, VISTA might be considered a potential target in combined therapy, especially for treating gastrointestinal malignancies.


Assuntos
Neoplasias do Sistema Digestório , Neoplasias Gastrointestinais , Humanos , Antígenos B7/metabolismo , Neoplasias Gastrointestinais/terapia , Ativação Linfocitária , Imunoterapia/métodos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...